85 research outputs found

    Off-shell effects on particle production

    Get PDF
    We investigate the observable effects of off-shell propagation of nucleons in heavy-ion collisions at SIS energies. Within a semi-classical BUU transport model we find a strong enhancement of subthreshold particle production when off-shell nucleons are propagated.Comment: 11 pages, 3 figure

    Particle production in quantum transport theories

    Full text link
    The particle production in the intermediate energy heavy ion collisions is discussed in the framework of the nonequilibrium Green's functions formalism. The evolution equations of the Green's functions for fermions allows for the discussion of the off-shell fermion propagator and of the large momentum component in the initial state. For the case of a homogeneous system numerical calculations of the meson production rate are performed and compared with the semiclassical production rate.Comment: 45 pages, figures included, uses FEYNMAN macro

    Correlations and Equilibration in Relativistic Quantum Systems

    Full text link
    In this article we study the time evolution of an interacting field theoretical system, i.e. \phi^4-field theory in 2+1 space-time dimensions, on the basis of the Kadanoff-Baym equations for a spatially homogeneous system including the self-consistent tadpole and sunset self-energies. We find that equilibration is achieved only by inclusion of the sunset self-energy. Simultaneously, the time evolution of the scalar particle spectral function is studied for various initial states. We also compare associated solutions of the corresponding Boltzmann equation to the full Kadanoff-Baym theory. This comparison shows that a consistent inclusion of the spectral function has a significant impact on the equilibration rates only if the width of the spectral function becomes larger than 1/3 of the particle mass. Furthermore, based on these findings, the conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a dynamical spectral function A(X,\vec{p},M^2). The off-shell propagation is implemented in the Hadron-String-Dynamics (HSD) transport code and applied to the dynamics of nucleus-nucleus collisions.Comment: 20 pages, 7 figures to appear in "Nonequilibrium at short time scales - Formation of correlations", edited by K. Morawetz, Springer, Berlin (2003), p16

    Equilibration within a semiclassical off-shell transport approach

    Get PDF
    Equilibration times for nuclear matter configurations -- modelling intermediate and high energy nucleus-nucleus collisions -- are evaluated within the semiclassical off-shell transport approach developed recently. The transport equations are solved for a finite box in coordinate space employing periodic boundary conditions. The off-shell transport model is shown to give proper off-shell equilibrium distributions in the limit tt \to \infty for the nucleon and Δ\Delta-resonance spectral functions. We find that equilibration times within the off-shell approach are only slightly enhanced as compared to the on-shell limit for the momentum configurations considered.Comment: 19 pages, LaTeX, including 4 postscript figures, submitted to Nucl. Phys.

    Baryon flow at SIS energies

    Get PDF
    We calculate the baryon flow in the energy range from .25 to 2.5AGeV\le 2.5 AGeV in a relativistic transport model for Ni+NiNi+Ni and Au+AuAu+Au collisions employing various models for the baryon self energies. We find that to describe the flow data of the FOPI Collaboration the strength of the vector potential has to be reduced at high relative momentum or at high density such that the Schr\"odinger- equivalent potential at normal nuclear density decreases above 1 GeV relative kinetic energy and approaches zero above 2 GeV.Comment: 20 pages, LATEX, 7 PostScript figure

    Dilepton production from parton interactions in the early stage of relativistic heavy-ion collisions

    Full text link
    We address the dilepton production from the parton interactions in the early stage of relativistic heavy-ion collisions within the parton-hadron-string dynamics (PHSD) off-shell transport approach. The description of partons in PHSD is based on the dynamical quasiparticle model (DQPM) matched to reproduce lattice QCD results in thermodynamic equilibrium. According to the DQPM the constituents of the strongly interacting quark-gluon plasma (sQGP) are massive and off-shell quasi-particles (quarks and gluons) with broad spectral functions. In order to address the electromagnetic radiation of the sQGP, we derive off-shell cross sections of q+qbar->gamma*, q+qbar->gamma*+g and q+g->gamma*+q (qbar+g->gamma*+qbar) reactions taking into account the effective propagators for quarks and gluons from the DQPM. Dilepton production in In+In collisions at 158 AGeV and in Au+Au at sqrt(s)=200 GeV is calculated by implementing these off-shell processes into the PHSD transport approach. By comparing to the data of the NA60 and PHENIX Collaborations, we study the relative importance of different dilepton production mechanisms and point out the regions in phase space where partonic channels are dominant.Comment: Talk presented at the International Nuclear Physics Conference (INPC 2010) in Vancouver, Canada on July 4 - 9, 2010, to be published in J.Phys.Conf.Se

    Self-consistent Approach to Off-Shell Transport

    Full text link
    The properties of two forms of the gradient expanded Kadanoff--Baym equations, i.e. the Kadanoff--Baym and Botermans-Malfliet forms, suitable to describe the transport dynamics of particles and resonances with broad spectral widths, are discussed in context of conservation laws, the definition of a kinetic entropy and the possibility of numerical realization. Recent results on exact conservations of charge and energy-momentum within Kadanoff-Baym form of quantum kinetics based on local coupling schemes are extended to two cases relevant in many applications. These concern the interaction via a finite range potential, and, relevant in nuclear and hadron physics, e.g. for the pion--nucleon interaction, the case of derivative coupling.Comment: 35 pages, submitted to issue of Phys. Atom. Nucl. dedicated to S.T. Belyaev on the occasion of his 80th birthday. Few references are adde

    Towards a fully self-consistent spectral function of the nucleon in nuclear matter

    Get PDF
    We present a calculation of nuclear matter which goes beyond the usual quasi-particle approximation in that it includes part of the off-shell dependence of the self-energy in the self-consistent solution of the single-particle spectrum. The spectral function is separated in contributions for energies above and below the chemical potential. For holes we approximate the spectral function for energies below the chemical potential by a δ\delta-function at the quasi-particle peak and retain the standard form for energies above the chemical potential. For particles a similar procedure is followed. The approximated spectral function is consistently used at all levels of the calculation. Results for a model calculation are presented, the main conclusion is that although several observables are affected by the inclusion of the continuum contributions the physical consistency of the model does not improve with the improved self-consistency of the solution method. This in contrast to expectations based on the crucial role of self-consistency in the proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.

    Spectral Function of Quarks in Quark Matter

    Full text link
    We investigate the spectral function of light quarks in infinite quark matter using a simple, albeit self-consistent model. The interactions between the quarks are described by the SU(2) Nambu--Jona-Lasinio model. Currently mean field effects are neglected and all calculations are performed in the chirally restored phase at zero temperature. Relations between correlation functions and collision rates are used to calculate the spectral function in an iterative process.Comment: final version, published in PRC; 15 pages, RevTeX

    Differential Flow of Protons in Au+Au Collisions at AGS Energies

    Get PDF
    We study the proton sideward and elliptic differential flow for Au+Au collisions at AGS energies (2 -- 8 A cdot GeV) in a microscopic relativistic transport model that includes all baryon resonances up to a mass of 2 GeV as well as string degrees of freedom for the higher hadronic excitations. In order to explore the sensitivity of the various differential flows to the nuclear equation of state (EoS) we use three different parameterizations of the scalar- and vector mean-fields, i.e. NL2 (soft), NL23 (medium) and NL3 (hard), with their momentum dependence fitted to the experimental Schrodinger equivalent potential (at normal nuclear matter density rho_0) up to kinetic energies of 1 GeV. We calculate the excitation function of sideward and elliptic flow within these parameter sets for Au+Au collisions and compare with the recent data from the E895 Collaboration as a function of rapidity, impact parameter and transverse momentum, respectively. We find that the best description of the differential data is provided by a rather 'stiff' EoS at 2 A cdot GeV (NL3) while at higher bombarding energies (4--8 A cdot GeV) a 'medium' EoS leads to the lowest chi^2 with respect to the data. However, the differences in the transverse and elliptic flows (from the different parameter sets) become of minor significance at 4--8 A cdot GeV. We attribute this insensitivity to a similar reduction of the vector potential in all models and to the dominance of string degrees of freedom at these bombarding energies.Comment: 18 pages, 7 figures, submitted for publicatio
    corecore